國立嘉義大學 101 學年度基礎學科學力競賽試題卷
科目：化學（化學系）
題型：選擇題
配分： 100%

1．The density of lead is $11.35 \mathrm{~g} / \mathrm{mL}$ ．The experimental values obtained for the density of lead are $10.9,11.5$ ， and $11.8 \mathrm{~g} / \mathrm{mL}$ ．Which one of the best describes this collection of data？
（A）accurate（B）precise
（C）both A and B
（D）not enough information

2．Which of the following numbers has the fewest number of significant figures？
1235
0.30001
12000
0.00800
（A） 1235
（B） 0.30001
（C） 12000
（D） 0.00800

3．Consider the numbers 23.68 and 4.12 ．The sum of these numbers has \qquad significant figures，and the product of these numbers has \qquad － 4,3
$\begin{array}{llll}\text {（A）} 3,3 & \text {（B）} 4,4 & \text {（C）} 3,4 & \text {（D）} 4,3\end{array}$
Which of the following is the greatest mass？
（A） $2.0 \times 10^{2} \mathrm{mg}$
（B） 10.0 dg
（C） $1.0 \times 10^{5} \mu \mathrm{~g}$
（D） $2.0 \times 10^{2} \mathrm{cg}$

5．${ }_{20}^{40} \mathrm{Ca}^{2+}$ has
（A） 20 protons， 20 neutrons，and 18 electrons
（B） 20 protons， 20 neutrons，and 20 electrons
（C） 20 protons， 22 neutrons，and 18 electrons
（D） 22 protons， 18 neutrons，and 18 electrons
6．Which of the following pairs is incorrect？
（A） $\mathrm{NH}_{4} \mathrm{Br}$ ，ammonium bromide（B） $\mathrm{K}_{2} \mathrm{CO}_{3}$ ，potassium carbonate（C） BaPO_{4} ，barium phosphate，（D）
CuCl ，copper（I）chloride
7．What is the coefficient for water when the following equation is balanced？

$$
\mathrm{As}(\mathrm{OH})_{3}(s)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{As}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

$\begin{array}{ll}\text {（A）} 12 & \text {（B）} 6\end{array}$
（C） 4
（D） 2

8．Consider the following reaction： $2 \mathrm{~A}+\mathrm{B} \rightarrow 3 \mathrm{C}+\mathrm{D}$
3.0 mol A and 2.0 mol B react to form 4.0 mol C ．What is the percent yield of this reaction？
（A） 67%（B） 75%（C） 89%（D） 100%
9．How many of the following salts are expected to be insoluble in water？
Sodium sulfide barium nitrate ammonium sulfate potassium phosphate
（A）none（B） 1
（C） 2
（D） 3

10．In accordance with the solubility rules，which of the following will occur when solutions containing about 0.1 g of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ and $\mathrm{KI}(\mathrm{aq}) / 100 \mathrm{~mL}$ are mixed？
（A） KNO_{3} will precipitate； Pb^{2+} and I^{-}will be spectator ions．（B）No precipitate will form（C）
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ will precipitate； K^{+}and I^{-}will be spectator ions．（D） PbI_{2} will precipitate； K^{+}and NO_{3}^{-}will be spectator ions．
11．All of the following are weak acids except
（A） HCNO
（B） HBr
（C） HF
（D） HNO_{2}

12．As the volume of a gas decreases，the pressure increases due to
（A）an increase in temperature of the gas molecules．
（B）a decrease in the density of the gas system．
（C）an increase in the number of collisions occurring per unit time．
（D）a decrease in the kinetic energy of the gas molecules．
13．Of energy，work，enthalpy，and heat，how many are state functions？
$\begin{array}{ll}\text {（A）} 1 & \text {（B）} 2\end{array}$
（C） 3
（D） 4

14．When an hydrogen electron makes transition from $n=3$ to $n=1$ ，which of the following statement is true？
I．Energy is emitted．
II．Energy is absorbed．
III．The electron loses energy．
IV．The electron gains energy．
V．The electron cannot make this transition．
（A）II，III
（B） V
（C）I，III
（D）II，III

15．How many electrons in an atom can have the quantum numbers $n=4, l=2$ ？
（A） 14
$\begin{array}{lll}\text {（B）} 12 & \text {（C）} 5\end{array}$
（D） 10

16．Order the elements， S, Cl ，and F in the terms of increasing ionization energy．
（A）S，Cl，F
（B）Cl，F，S
（C）F，S，Cl
（D）F，Cl，S

17．Which of the following statements about quantum theory is incorrect？
（A）The energy and position of an electron cannot be determined simultaneously．
（B）Lower energy orbitals are filled with electrons before higher energy orbitals．
（C）When filling orbitals of equal energy，two electrons will occupy the same orbital before filling a new orbital．
（D）No two electrons can have the same four quantum numbers．
18．The small，but important，energy differences between $3 s, 3 p$ ，and $3 d$ orbitals are due mainly to
（A）the number of electrons they can hold（B）their principal quantum number
（C）the Heisenberg
uncertainty principle
（D）the penetration effect

19．In the gaseous phase，which of the following diatomic molecules would be the most polar？
（A）LiF
（B） CsF
（C） NaCl
（D） CsCl

20．Which of the following has the smallest radius？
（A） F^{-}
$\begin{array}{lll}\text {（B）} \mathrm{Ne} & \text {（C）} \mathrm{O}^{2-}\end{array}$
（D） Mg^{2+}

21．Which of the following ionic compounds has the largest lattice energy？
（A） BaO
（B） BeO
（C）CsI
（D） NaBr

Draw the Lewis structures of the molecules below and use them to answer the questions from 22 to 24 ．
I．$\quad \mathrm{BH}_{3}$
II． NO_{2}
III． SF_{6}
IV． $\mathrm{O}_{3} \quad$ V． PCl_{5}

22．Which of the molecules obeys the octet rule？
（A）IV
（B）III
（C）II
（D）I

23．How many of the molecules have no dipole moment？
（A） 1
（B） 2
（C） 3
（D） 4
24. Which of these molecules show resonance?
(A)I, II
(B) II, IV
(C) II, V
(D) III, IV
25. The molecular structure of OF_{2} is
(A)pyramidal
(B) bent
(C) Octahedral
(D) trigonal plannar
26. The bond angles about the carbon atom in the formaldehyde molecule, $\mathrm{H}_{2} \mathrm{C}=\mathrm{O}$, are about:
(A) 120° (B) 60°
(C) 109° (D) 90°
27. The hybridization of the central atom in $\mathrm{NO}_{3}{ }^{-}$is
(A) p^{3}
(B) sp^{2}
(C) sp^{3}
(D) sp
28. As the bond order of a bond increases, the bond energy \qquad and the bond length \qquad .
(A) increases, increases
(B) decreases, decreases
(C) increases, decreases
(D) decreases, increases
29. What is the bond order of $\mathrm{He}_{2}{ }^{+}$?
(A) 0
$\begin{array}{ll}\text { (B) } 1 / 2 & \text { (C) } 1\end{array}$
(D) $1 \frac{1}{2}$
30. If four orbitals on one atom overlap four orbitals on a second atom, how many molecular orbitals will form?
$\begin{array}{ll}\text { (A) } 1 & \text { (B) } 4\end{array}$
(C) 8
(D) 16
31. The fact that O_{2} is paramagnetic can be explained by
(A) the Lewis structure of O_{2}
(B) resonance (C) hybridization of atomic orbitals in O_{2}
(D) the molecular orbital diagram for O_{2}
32. How many of the following help determine whether or not a solution forms?
I. the polarities of the solute and solvent
II. the densities of the solute and solvent
III. the probability of the mixed state (of the solution)
IV. the energies needed for the solution formation to occur
V. the state of matter of the solute (solid, liquid, gas)
$\begin{array}{ll}\text { (A) } 1 & \text { (B) } 2\end{array}$
(C) 3
(D) 4
33. Which of the following is the correct order of boiling points for $\mathrm{KNO}_{3}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}$, Ne ?
(A) $\mathrm{Ne}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{C}_{2} \mathrm{H}_{6}<\mathrm{KNO}_{3}$
(B) $\mathrm{KNO}_{3}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{C}_{2} \mathrm{H}_{6}<\mathrm{Ne}$
(C) $\mathrm{Ne}<$
$\mathrm{C}_{2} \mathrm{H}_{6}<\mathrm{KNO}_{3}<\mathrm{CH}_{3} \mathrm{OH}$
(D) $\mathrm{Ne}<\mathrm{C}_{2} \mathrm{H}_{6}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{KNO}_{3}$
34. For the following solution, describe the deviation with respect to Raoult's Law.

$$
\text { hexane }\left(\mathrm{C}_{6} \mathrm{H}_{14}\right) \text { and chloroform }\left(\mathrm{CHCl}_{3}\right)
$$

(A) relatively ideal
(B) positive deviation (C) negative deviation
(D) more information needed
35. A solution of hydrogen peroxide is $23.3 \% \mathrm{H}_{2} \mathrm{O}_{2}$ by mass and has a density of $1.11 \mathrm{~g} / \mathrm{cm}^{3}$. The molarity of the solution is :
(A) 7.14 M
(B) 0.259 M
(C) 7.60 M
(D) 7.93 M
36. Rank the following compounds according to increasing solubility in water.
I. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
II. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
III. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
IV. $\mathrm{CH}_{3}-\mathrm{OH}$
$\begin{array}{llll}\text { (A) } \text { I }<\text { III }<\text { IV }<\text { II } & \text { (B) } \text { I }<\text { II }<\text { IV }<\text { III } & \text { (C) } \text { I }<\text { II }<\text { III }<\text { IV } & \text { (D) III }<\text { IV }<\text { II }<\text { I }\end{array}$
37. Which of the following solutions would have the highest osmotic pressure?
(A) 0.2 M NaBr , sodium bromide (B) $0.2 \mathrm{M} \mathrm{CaCl}_{2}$, calcium chloride
(C) $0.3 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$, acetic acid (D) $0.3 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, glucose
38. Given the following acids and K_{a} values:

$$
\begin{array}{cccc}
\mathrm{HClO}_{4} & \text { HOAc } & \text { HCN } & \text { HF } \\
1 \times 10^{7} & 1.76 \times 10^{-5} & 4.93 \times 10^{-10} & 3.53 \times 10^{-4}
\end{array}
$$

What is the order of increasing base strength?
(A) $\mathrm{CN}^{-}, \mathrm{F}^{-}, \mathrm{OAc}^{-}, \mathrm{ClO}_{4}^{-}$
(B) $\mathrm{CN}^{-}, \mathrm{OAc}^{-}, \mathrm{F}^{-}, \mathrm{ClO}_{4}^{-}$
(C) $\mathrm{ClO}_{4}^{-}, \mathrm{OAc}^{-}, \mathrm{CN}^{-}, \mathrm{F}^{-}$
(D) $\mathrm{ClO}_{4}^{-}, \mathrm{F}^{-}, \mathrm{OAc}^{-}, \mathrm{CN}^{-}$
39. The dihydrogenphosphate ion, $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$, has both a conjugate acid and a conjugate base. These are, respectively:
(A) $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{PO}_{4}{ }^{3-}(\mathrm{B})$
(B) $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HPO}_{4}{ }^{2-}$
(C) $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}, \mathrm{HPO}_{4}{ }^{2-}$ (D) $\mathrm{HPO}_{4}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}$
40. A buffer solution is prepared by dissolving 0.3 mol of $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and 0.6 mol of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ in water. Which substance will show a decrease in concentration when a strong base is added?
(A) Na^{+}(B) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$(C) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (D) $\mathrm{H}_{3} \mathrm{O}^{+}$
41. Consider a solution consisting of the following two buffer systems:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{HCO}_{3}{ }^{-}+\mathrm{H}^{+} \\
& \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \rightleftharpoons \mathrm{p}_{\mathrm{a}}=6.4 \\
& \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}^{+}
\end{aligned} \begin{aligned}
& \mathrm{p} K_{\mathrm{a}}=7.2
\end{aligned}
$$

At pH 6.4, which one of the following is true of the relative amounts of acid and conjugate base present?
(A) $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]>\left[\mathrm{HCO}_{3}{ }^{-}\right]$and $\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]>\left[\mathrm{HPO}_{4}{ }^{2-}\right]$
(B) $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\left[\mathrm{HCO}_{3}{ }^{-}\right]$and $\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]>\left[\mathrm{HPO}_{4}{ }^{2-}\right]$
(C) $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\left[\mathrm{HCO}_{3}{ }^{-}\right]$and $\left[\mathrm{HPO}_{4}{ }^{2-}\right]>\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]$
(D) $\left[\mathrm{HCO}_{3}{ }^{-}\right]>\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ and $\left[\mathrm{HPO}_{4}{ }^{2-}\right]>\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]$
42. In the reaction $\mathrm{P}_{4}(\mathrm{~s})+10 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PCl}_{5}(\mathrm{~s})$, the reducing agent is
(A) Chlorine (B) PCl_{5}
(C) phosphorus
(D) Cl^{-}
43. How much heat is required to raise the temperature of a 4.48-g sample of iron (specific heat $=0.450 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$) from $25.0^{\circ} \mathrm{C}$ to $79.8^{\circ} \mathrm{C}$?
(A) 1.98 J
(B) 246 J
(C) 110 J
(D) 546 J
44. The freezing point of helium is $-270^{\circ} \mathrm{C}$. The freezing point of xenon is $-112^{\circ} \mathrm{C}$. Both of these are in the noble gas family. Which of the following statements is supported by these data?
(A) Helium and xenon form highly polar molecules. (B) As the molecular weight of the noble gas increases, the freezing point decreases. (C) The London dispersion forces between the helium molecules are less than the London dispersion forces between the xenon molecules. (D) None of these.
45. Which of the following compounds has the lowest viscosity?
(A) $\mathrm{CCl}_{4}(\mathrm{I})$
(B) $\mathrm{N}_{2}(g)$
(C) $\mathrm{H}_{2} \mathrm{O}(l)$
(D) $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{25}-\mathrm{CH}_{3}(\mathrm{l})$
46. Four identical 1.0-L flasks contain the gases $\mathrm{He}, \mathrm{Cl}_{2}, \mathrm{CH}_{4}$, and NH_{3}, each at $0^{\circ} \mathrm{C}$ and 1 atm pressure. For which gas do the molecules have the highest average velocity?
(A) He
(B) Cl_{2}
(C) CH_{4}
(D) NH_{3}
47. In which case must a reaction be spontaneous at all temperatures?
(A) ΔH is positive, ΔS is positive. (B)
(B) $\Delta H=0, \Delta S$ is negative
(C) $\Delta S=0, \Delta H$ is positive.
(D) ΔH is negative, ΔS is positive.
48. Which of the following statements is true?
(A)The total energy and entropy of the universe are both increasing.
(B) The total energy of the universe is increasing, but the entropy is constant.
(C) The total energy of the universe increases, while the entropy decreases.
(D) The total energy of the universe is constant, but the entropy is increasing.
49. You have two salts, AgX and AgY , with very similar $K_{\text {sp }}$ values. You know that K_{a} for HX is much greater than K_{a} for HY. Which salt is more soluble in acidic solution?
(A) AgX (B) AgY (C) They are equally soluble in acidic solution. (D) Cannot be determined by the information given.
50. The most likely reason for colloidal dispersion is
(A) the Tyndall effect
(B) coagulation
(C) emulsion formation
(D) electrostatic repulsion

