國立嘉義大學 99 學年度

數理教育研究所碩士班（甲組）招生考試試題

科目：微積分

1．Find the limit for each：（ 10% ）
（a） $\lim _{x \rightarrow \infty}\left(\sqrt{4 x^{2}+3 x}-2 x\right)=$ \qquad （b） $\lim _{x \rightarrow 0} \frac{x^{3}-x^{2}}{e^{x}+e^{-x}-2}=$ \qquad

2．Evaluate：（ 20% ）
（a） $\int \sec ^{3} x d x=$ ？
（b） $\int_{-\infty}^{\infty} \frac{e^{x}}{1+e^{2 x}} d x=$ ？

3．Let R be the solid region bounded by the graphs $y=\frac{1}{4} x^{2}, x=0$ and the line $y=1$ ． Find the volume of the solid generated when R is revolved about（a）the x－axis and（b）the line $y=2$ respectively．（ 20% ）

4．Evaluate each of the following limits，if it exists．（20\％）
（a） $\lim _{x \rightarrow 1} \frac{x^{3}+2 x-3}{x^{2}-4 x+3}$
（b） $\lim _{x \rightarrow 3} \frac{\sqrt{12-x}-3}{\sqrt{4-x}-1}$

5．（a）Let $f(x)=\left(x^{4}+1\right)^{2010}$ ．Find $f^{\prime \prime}(x)$ ．（10\％）
（b）Suppose that $g^{\prime \prime \prime}(a)$ exists．Find $\lim _{h \rightarrow 0} \frac{g(a+h)-g(a-h)-2 h g^{\prime}(a)}{h^{3}}$ ．

6．Suppose that $f(1)=3$ and $f^{\prime}(x) \leq 3, \forall x \in R$ ．How large can $f(4)$ possibly be？ （10\％）

