國立嘉義大學九十八學年度
應用數學系碩士班（甲組）招生考試試題 

科目：高等微積分
說明：本考試試題為計算、證明題，請標明題號，同時將過程作答在「答案卷」上。
1. Let
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for x in the interval [0,2]. Show that the sequence of functions f1, f2, f3,…converges pointwise on the interval [0,2] but that the convergence is not uniform.  (10%)

2 In a complete ordered field, define a sequence {xn} inductively by 
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 EMBED Equation.DSMT4  [image: image7.wmf].

K

. Show that {xn} converges and compute the value of the limit.  (15%)
3 Prove or disprove the following statements.
(a) Every closed set in 
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 can be written as a countable union of compact sets.  (5%)

(b) Any countable union of closed sets in 
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 is a closed set.  (5%)

(c) The set 
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 is compact in 
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4 Suppose that 
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 is a sequence of functions which converges uniformly to a function 
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 on a closed interval 
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(a) Prove that 
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 is bounded on 
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(b) Prove that if each 
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 is Riemann integrable on 
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, then so is 
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 and the sequence 
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5 (a) Let 
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 be the real-valued function defined by 
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Prove that 
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 is differentiable at the point 
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(b) Suppose that the function 
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 Prove that the first-order partial derivative of 
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 with respect to 
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 at the point 
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 exists.  (10%)

6 Let (M, d) be a metric space. Prove that the following assertions are true.
(a)  A compact set A ( M is closed.  (7%)
(b)  If M is a compact metric space and B ( M is closed, then B is compact.  (3%)
(c)  A compact set A ( M is sequentially compact.  (10%)
(d)  A sequentially compact set A ( M is totally bounded.  (5%)
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