國立嘉義大學九十二學年度轉學生招生考試試題

科目：線性代數

一，填充題：（60\％，請標明題號，並將答案寫在答案卷上）

1．If $(1,2,-3),(2,-1, a),(0,2 a+1,-8)$ are linearly dependent，then the integer value of a is
\qquad （10\％）

2．Let $A=\left[\begin{array}{ccc}3 & -2 & -5 \\ 4 & -1 & -5 \\ -2 & -1 & -3\end{array}\right]$ ．
（1）．The characteristic polynomial of A is \qquad （3\％）
（2）．The eigenvalues of A are \qquad （2\％）
（3）．The eigenvectors of A are \qquad （4\％）
（4）．Is A diagonalizable？ \qquad ．（1\％）

3．Let $A=\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$ ．
（1）．The minimal polynomial of A is \qquad （5\％）
（2）．$A^{5}-4 A^{4}+7 A^{3}-9 A^{2}+6 A-I_{3}=$ \qquad ．（5\％）

4．（1）．Let $B=\left[\begin{array}{ll}1 & 3 \\ 5 & 3\end{array}\right]$ and $f(x)=2 x^{2}-4 x+3$ ．The linearly independent eigenvectors of B are
\qquad ，（4\％）$f(B)=$ \qquad （3\％）
（2）．If \mathbf{x} is an eigenvector of A^{2} ，then determine whether \mathbf{x} is also an eigenvector of A ？
\qquad ．（3\％）．

5．Let $A=\left[\begin{array}{rr}1 & 2 \\ -1 & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & \frac{1}{4} \\ 0 & 1\end{array}\right]$
（1）． $\operatorname{rank}(A)=$ \qquad （2\％），nullity of $A=$ \qquad （2\％）
（2）．Is B one－to－one？ \qquad ．（3\％）Is B onto？ \qquad ．（3\％）

6．（1）．Let $A^{2}=O$ ．All the eigenvalues of A are \qquad （3\％）
（2）．Let A be an orthogonal matrix．Determine $|A|=$ \qquad （3\％）
（3）．If 0 is an eigenvalue of A ，determine whether A is singular or nonsingular？ \qquad －

（4\％）

二，計算證明題：（ $\mathbf{4 0 \%}$ ，請標明題號，並將計算過程寫在答案卷上）

1．Let A be a real $n \times n$ matrix．Show that if 1 is an eigenvalue of A ，then $A^{k}-I_{n}$ is not invertible，where I_{n} is the identity matrix and k is a positive integer．（10\％）

2．Consider the bases $A=\{(2,4),(3,1)\}$ and $B=\{(1,1),(1,-1)\}$ ．Suppose that $T: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{2}$ is a linear transformation such that the matrix of T with respect to A is $\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]$ ，find the matrix of T with respect to $B .(10 \%)$

3．Let $S=\{\mathbf{u}, \mathbf{v}\}$ be a linearly independent set．Prove that the set $\{\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}\}$ is linearly independent．（10\％）

4．Let V be the vector space of functions which has $\{\sin \theta, \cos \theta\}$ as a basis，and let D be the differential operator on V ．
（1）．Determine the matrix A of D ．（5\％）
（2）．Show that D is a zero of $f(t)=t^{2}+1$ ．（5\％）

