
國立嘉義大學九十二學年度轉學生招生考試試題

科目:普通物理

(請將答案寫在答案卷上)

- 1. (15%) An 0.5 kg particle was attached by a spring moves in a frictionless horizontal plane as a simple harmonic motion X(t)=Asin(ω t+ ϕ) with X(0)=0.75m, V(1)= π m/s, period T=2s. Find that
- 1) The angular frequency ω
- 2) The phase constant ϕ
- 3) The acceleration at the moment t=2, i.e. a(2)
- 2. (20%) We consider an Atwood machine in which two different objects, of mass m_1 and m_2 , hang from a string that passes over a pulley of mass M and radius R, see Fig.2 (a) Show that the moment of inertia of the pulley is $\frac{1}{2}MR^2$. (b) Calculate the magnitude of the acceleration a of the two objects.

- 3. (15%) The water flows through a horizontal pipe into the atmosphere at a speed of v_1 as shown below,
 - see Fig.3. Find that
- 1) The volume flows out during 5 minutes
- 2) The speed of water flow of left side v_2
- 3) The gauge pressure of left side

- 4. (15%) An uniform log with length L and mass M was attached to a wall and supported by a wire as shown in Fig.4. Find that
- 1) Write the equilibrium equations of torques act on the log
- 2) The tension of the wire
- 3) The force of the hinge acts on the log

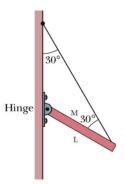
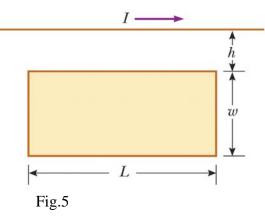



Fig.4

5. (15%). A long and straight wire carries a current I and lies in the plane of a rectangular wire loop of width w and length L as shown in Fig.5. (a) Determine the magnetic flux Φ_{R} through the loop due to the current I. (b) Suppose the current $I = I_{max} \sin(\omega t + \phi)$, determine the induced emf ε in the loop.

6. (20%) The switch in the circuit is closed at time t = 0. See fig.6 (a) Derive the differential equation of the current in the inductor by the Kirchhoff's laws for time t > 0. (b) Find the solution of the current in the inductor as function of time thereafter.

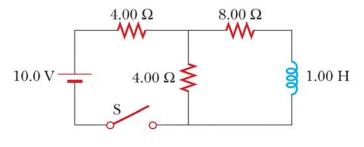


Fig.6