國立嘉義大學九十五學年度

光電暨固態電子研究所碩士班招生考試試題

科目：電磁學

1．（Fig．1）A spherical conductor，of radius a，carries a charge Q．It is surrounded by linear dielectric material of susceptibility χ_{e}（permittivity ε ），out to radius b ．
（a）Find the potential at the spherical center（relative to infinity）．（10\％）
（b）Find the energy of this configuration．（10\％）

Fig． 1

2．Two large metal plates（each of area A）are held a distance d apart．Suppose we put a charge Q on each plate，what is the electrostatic pressure on the plates．（20\％）

3．（Fig．2）A long coaxial cable carries current I（the current flows down the surface of the inner cylinder，radius a ，and back along the outer cylinder，radius b ）as shown in Fig． 2.
（a）Find the magnetic energy stored in a section of length l ，and（ 10% ）
（b）calculate the self－inductance L of the cable．（10\％）
Fig． 2

4．A direct current I flows in a straight wire of length $2 L$ ．Find the magnetic flux density \boldsymbol{B} at a point located at a distance r from the wire in the bisecting plane：
（a）the first method is by determining the vector magnetic potential $\boldsymbol{A},(10 \%)$
（b）the second method is by applying Biot－Savart law．（10\％）
（Hint ：the curl of a vector field $\overrightarrow{\mathrm{A}}$ in cylindrical corordinates (r, ϕ, z) can be expressed as

$$
\left.\vec{\nabla} \times \vec{A}=\hat{a}_{r}\left(\frac{\partial \mathrm{~A}_{\mathrm{z}}}{\mathrm{r} \partial \phi}-\frac{\partial \mathrm{A}_{\phi}}{\partial \mathrm{z}}\right)+\hat{a}_{\phi}\left(\frac{\partial \mathrm{A}_{\mathrm{r}}}{\partial z}-\frac{\partial \mathrm{A}_{z}}{\partial \mathrm{r}}\right)+\hat{a}_{z} \frac{1}{\mathrm{r}}\left[\frac{\partial}{\partial \mathrm{r}}\left(\mathrm{rA}_{\phi}\right)-\frac{\partial \mathrm{A}_{r}}{\partial \phi}\right]\right)
$$

5．The far field of a short vertical current element $I d l$ located at the origin of a spherical coordinate system in free space is

$$
\begin{align*}
& \vec{E}(R, \theta)=\hat{a}_{\theta} E(R, \theta)=\hat{a}_{\theta}\left(i \cdot \frac{60 \pi \cdot I d l}{\lambda R} \cdot \sin \theta\right) e^{-i \beta R} \tag{V/m}\\
& \vec{H}(R, \theta)=\hat{a}_{\phi} \frac{E(R, \theta)}{\eta_{o}}=\hat{a}_{\phi}\left(i \cdot \frac{I d l}{2 \lambda R} \cdot \sin \theta\right) e^{-i \beta R} \tag{A/m}
\end{align*}
$$

Where $\lambda=2 \pi / \beta$ is the wavelength，β is the propagation constant，and i is the imaginary number．
（a）Explain the physical meaning of the average value of Poynting vector $P_{a v}$ ．（10\％）
（b）Write the expression for the instantaneous Poynting vector．（5\％）
（c）Find the total average power radiated by the current element．（5\％）

