國立嘉義大學九十四學年度
 光電暨固態電子研究所碩士班招生考試試題

科目：電磁學

1．A cylindrical capacitor of length L consists of coaxial conducting surfaces of radii r_{i} and r_{0} ．Two dielectric media of different dielectric constants $\varepsilon_{r 1}$ and $\varepsilon_{r 2}$ fill the space between the conducting surfaces as shown in Fig．1．Determine its capacitance．（20\％）

Fig． 1

2．Two grounded，semi－infinite，parallel－plane electrodes are separated by a distance b ．A third electrode perpendicular to the both is maintained at a constant potential V_{0} as shown in Fig．2．Determine the potential distribution in the region enclosed by the electrodes．（20\％）

Fig． 2

3．By using the Biot－Savart law，find the magnetic field a distance s from a long straight wire $A B$ carrying a steady current I as shown in Fig．3．The angles between line $P O$ with respect to line $P A$ and $P B$ are θ_{1} and θ_{2} ，respectively．（20\％）

4．An infinitely long cylinder as presented in Fig．4，of radius R ，carries a＂frozen－in＂ magnetization，parallel to the axis，

$$
\vec{M}=k s \hat{z}
$$

where k is a constant and s is the distance from the axis；there is no free current anywhere．Calculate all the bound currents and then find the magnetic field inside and outside the cylinder ．（20\％）

Fig． 4

5．Find the Poynting vector on the surface of a long，straight conducting wire（of radius b and conductivity s）that carries a direct current I ，as sketched in Fig．5．Verifying the negative surface integral of the Poynting vector is exactly equal to the ohmic power loss in the conducting wire．（20\％）

Fig． 5

