國立嘉義大學九十三學年度

光電暨固態電子研究所碩士班招生考試試題

科目:電磁學

- —, Two infinite insulated conducting planes maintained at potentials 0 and V_o form a wedge-shaped configuration, as shown in Fig. 1. Determine the potential distributions for the regions:
 - (a) $0 < \phi < \alpha$. (10%)
 - (b) $\alpha < \phi < 2\pi$. (10%)

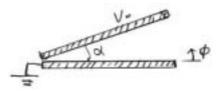


Fig. 1

- \square , A capacitor consists of two concentric spherical shells of radii R_i and R_o . The space between them is filled with a dielectric of relative permittivity ε_r from R_i to b($R_i < b < R_o$) and another dielectric of relative permittivity $3\varepsilon_r$ from b to R_o . Determine:
 - (a) \vec{E} and \vec{D} everywhere (R < R_i, R_i < R < b, b < R < R_o, R > R_o) in terms of an applied voltage V. (15%)
 - (b) the capacitance. (5%)
- \equiv , A current *I* flows down a long straight wire of radius *a*. If the wire is made of linear material (copper, say, or aluminum) with susceptibility x_m , and the current is distributed uniformly,
 - (a) What is the magnetic field at a distance s from the axis? (6%)
 - (b) Find all the bound currents. (8%)
 - (c) What is the net bound current flowing down the wire? (6%)
- \square . An alternating current $I = I_o cos(wt)$ flows down a long straight wire, and returns along a coaxial conducting tube of radius a.
 - (a) In what direction does the induced electric field point (radial, circumferential, or longitudinal)? (4%)
 - (b) Assuming that the field goes to zero as $s \to \infty$, find E(s, t). (6%)
 - (c) Integrate the displacement current density J_d to get the total displacement current I_d . (10%)
- Ξ . From the point of view of electromagnetics, the power transmitted by a lossless coaxial cable can be considered in terms of the Poynting vector inside the dielectric medium between the inner conductor and the outer sheath. Assuming that a d-c voltage V_o applied between the inner conductor (of radius a) and the outer sheath (of inner radius b) causes a current I to flow to a load resistance, verify that the integration of the Poynting vector over the cross-sectional area of the dielectric medium equals the power V_oI that is transmitted to the load. (20%)