國立嘉義大學九十六學年度

生物機電工程學系碩士班招生考試（乙組）試題

科目：自動控制

（※禁止使用計算機）
1．Given the block diagram model as shown in the following Fig．1，
（a）Sketch an equivalent signal－flow graph．（8\％）
（b）Find the transfer function using block diagram reduction rules．（8\％）
（c）Use Mason＇s gain formula to determine the transfer function．（9\％）
2．Consider the system in Fig．2（a），where the Nichols chart of G（s）is given in Fig．2（b）
（a）What is the gain margin of the closed－loop system？（5\％）
（b）What is the phase margin of the closed－loop system？（5\％）
（c）What is the steady state error when $r(t)=3$ and disturbance $d(t)=6$ for all $t>0$ ？（5\％）
（d）Where does the resonant peak of the closed－loop transfer function $\frac{G}{1+G}$ occur （answer in terms of frequency rad／sec）？（5\％）
（e）What are the maximum amplitude $M_{p w}$ and the resonance frequency ω_{r} ？（5\％）
3．A cylinder of mass and polar moment of inertia J about its axis rolls without slip （Fig．3）．A damping force is applied at a radius r from that axis，and a spring forces is applied at a radius 2 r ．
（a）Calculate the differential equation that relates x（horizontal displacement）to F（a horizontal force on the axis）．(15%)
（b）Find the transfer function $G(s)=\frac{x(s)}{F(s)}$（5\％）
（c）For a unit step input find $\mathrm{x}_{\mathrm{t}_{-\infty}}$ using the final value theorem．（5\％）

4．Consider a feedback system with the characteristic equation

$$
1+\frac{K}{s(s+1)(s+2)}=0 ; \quad K \geq 0
$$

（a）Draw the root locus．（15\％）
（b）Determine a range of values for K ，if a range exists，for which the system is stable． （5\％）
（c）Find the gain K that results in marginal stability．Determine the oscillation frequency．（5\％）

Fig． 1

Fig．2（a）

