國立嘉義大學九十三學年度應用化學系碩士班招生考試（乙組）試題

科目：微積分

一，填充題：（每題 7 分，共 70 分）

1． $\lim _{n \rightarrow \infty}\left(\frac{n+1}{n+2}\right)^{n}=$ \qquad －

2．Assume that f is a continuous function and that $\int_{0}^{x} f f(t) d t=\sin x-x \cos x$ ．
（a）$f(\pi / 2)=$ \qquad ，（b）$f^{\prime}(x)=$ \qquad －．

3． $\int \frac{\sec ^{2} \theta}{\tan ^{3} \theta-\tan ^{2} \theta} d \theta=$ \qquad －

4．The arc length from the origin to the point $\left(x\left(\theta_{1}\right), y\left(\theta_{1}\right)\right)$ along the exponential spiral $r=a e^{c \theta}, a, c>0$, is \qquad ．

5．Consider the region in the right half－plane that is outside the parabola $y=x^{2}$ and is between the lines $y=x+2$ and $y=2 x-2$ ．A solid is generated by revolving the specified region around the y－axis．The volume of the solid is \qquad ．

6． $\lim _{x \rightarrow 1} \frac{1}{x-1} \int_{x+1}^{x^{2}+x} \ln \left(t^{2}+1\right) d t=$ \qquad －．

7．Let $f(x)=\left\{\begin{array}{ll}x e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ ．Then $f^{\prime \prime}(0)=$ \qquad
8． $\int x^{2} 2^{x^{3}} d x=$ \qquad ．

9．Let V be the volume of the solid generalized by revolving the region between $y=\sqrt{x}$ and $y=x^{2}, 0 \leq x \leq 1$ about the line $x=2$ ．Then $V=$ \qquad ．

10．Let $\frac{d y}{d x}=\frac{2 x}{y}, y(0)=2$ ．Then $y=$ \qquad －．

二，計算題：（每題 10 分，共 30 分）
1．Let $F(x)=\int_{0}^{x} t(t-3)^{2} d t$ ．
（a）Find the critical numbers of F and determine the intervals on which F is increasing and the intervals on which F is decreasing．
（b）Determine the concavity of the graph of F and find the points of inflection，if any．
（c）Sketch the graph of F ．
2．Evaluate $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-(x-y)^{2}}}{1+(x+y)^{2}} d x d y$ by intergrating over the square $S_{a}:-a \leq x \leq a, \quad-a \leq y \leq a$ and taking the limit as $a \rightarrow \infty$ ．

3．Find the minimum values of $f(x, y, z)=2 x^{2}+y^{2}+3 z^{2}$ subject to the constraint： $2 x-3 y-4 z-49=0$ ．

