國立嘉義大學九十三學年度 應用化學系碩士班招生考試(甲組)試題

科目:綜合化學 II

注意:本試題可使用計算機

一、物理化學 (50%)

- 1. (1) What state function must remain constant in the Joule experiment? (2) What state function must remain constant in the Joule-Thomson experiment? (5%)
- 2. One Kg of iron (specific heat $C_p = 0.47 \text{ J K}^{-1} \text{ g}^{-1}$) at $100 \,^{\circ}C$ is place in 1 Kg of water $(C_p = 4.19 \text{ J K}^{-1} \text{ g}^{-1})$ at 0°C. Calculate the final temperature and the entropy change. (10%)
- 3. Find the wavelength of the light emitted when a 1×10^{-27} g particle in a 0.3 nm one-dimensional box goes from the n = 2 to the n = 1 level. $(h = 6.626 \times 10^{-34} JS^{-1})$ (10 %)
- 4. Find the selection rule for a particle of charge Q in a one-dimensional box of length a. (10 %)
- 5. The probability that a molecule of mass m in a gas at temperature T has speed v given by the Maxwell-Boltzman's distribution

$$f(v) = 4\pi (\frac{m}{2\pi kT})^{3/2} v^2 e^{-mv^2/2k}$$

where k is Boltzman's constant.

- (1) Find the most probable speed.
- (2) Find the average speed.
- (3) Find the root mean square speed.
- (4) Find the collision rate of a particular O_2 molecule at $25^{\circ}C$ and 1atm. The bond distance in O_2 is 0.12 nm.
- (5) Find the mean free path of O_2 molecule at $25^{\circ}C$ and 1atm.

$$(I_n = \int_0^\infty e^{-ar^2} r^n dr, \quad I_n = \frac{(n-1)}{2a} I_{n-2}, \quad I_0 = \frac{1}{2} \sqrt{\frac{\pi}{a}}, \quad I_1 = \frac{1}{2a})$$
(15 %)

二、分析化學 (50%)

Part A. 單選: (20%)

- 1. The degree of agreement among several measurements of the same quantity is called
 - (A) accuracy (B) error (C) precision (D) certainty

- 2. The carbohydrate content of a glycoprotein is determined, the mean value and standard deviation obtained by five measurements are 12.3 and \pm 0.4 g/100g, respectively. The t values at 95% confidence level for degree of freedom 3, 4, 5 are 3.182, 2.776, 2.571. The 95% confidence interval for the carbohydrate content is (A) $12.3 \pm 0.4 \text{ g}/100\text{g}$ (B) $12.3 \pm 0.5 \text{ g}/100\text{g}$ (C) $12.3 \pm 0.6 \text{ g}/100\text{g}$ (D) none of the above.
- 3. The charge balance equation for a solution of Na₃PO₄ in water (considering all possible equilibrium reactions) is (A) $[Na^+] = 3 [PO_4^{3-}]$ (B) $[Na^+] = [PO_4^{3-}] + [HPO_4^{2-}] + [H_2PO_4^{-}]$ (C) $3[Na^+] + [H_3O^+] = [PO_4^{3-}] + 2[HPO_4^{2-}] + 3[H_2PO_4^{--}] + [OH^-]$ (D) $[Na^+] + [H_3O^+] = 3[PO_4^{3-}] + 2[HPO_4^{2-}] + [H_2PO_4^{-}] + [OH^-]$
- 4. Which of the following statements about EDTA titration is *correct*? (A) Conditional formation constant of metal-EDTA complex is increased with increasing pH.
 - (B) The stoichiometry for the reaction of Fe^{3+} and EDTA is 1:3.
 - (C) When analyte, metal ion A, is analyzed by the displacement titration by adding complex derived from EDTA and metal ion B, B-EDTA. The formation constant of A-EDTA must be smaller than that of B-EDTA.
 - (D) When analyte, metal ion A, is analyzed by adding excess EDTA, then back titrated with metal ion B, the formation constant of A-EDTA must be smaller than that of **B-EDTA**.
- 5. $E^{\circ}_{(Cu^{2+}-Cu)} = 0.339V$. The half-cell potential for Cu electrode immersed in a solution of $1.00 \times 10^{-4} \text{ M Cu}^{2+} \text{ is}$ (A) 0.457V (B) 0.398V (C) 0.280V (D) 0.221V
- 6. Which of the following electromagnetic radiations corresponds to ΔE of molecular vibration? (A) ultraviolet radiation (B) infrared radiation (C) microwaves (D) radio waves
- 7. Which of the following transitions might emit fluorescent radiation? (S:singlet, T:triplet) (A) $S_2 \rightarrow T_1$ (B) $S_0 \rightarrow T_1$ (C) $T_1 \rightarrow S_0$ (D) $S_1 \rightarrow S_0$

- 8. In atomic absorption spectrometry, a reagent which is used to react with analyte to prevent it from transforming into nonanalyzable form is called
 - (A) protecting agent (B) releasing agent
 - (C) ion suppressor (D) background correction agent
- 9. Which of the following statements about chromatography is *incorrect*?
 - (A) In reverse-phase LC, mobile phase is more polar than stationary phase.
 - (B) In normal-phase LC, raising the polarity of mobile phase will increase the retention time of polar solute.
 - (C) In GC, increasing temperature will reduce the retention time of solute.

(D) In open-tubular GC, A in van-Deemter equation ($H = A + \frac{B}{u} + Cu$) is zero.

10. For graphite furnace AAS (GFAAS) and ICP-AES, which statement is correct?

(A) Detection limit: GFAAS < ICP-AES (B) Sample volume: GFAAS > ICP-AES

(C) Linear working range: GFAAS > ICP-AES (D)Sample throughput: GFAAS < ICP-AES

Part B. 計算及問答: (30%)

- 1. Calculate the pH of solution when 25.00 ml 0.1000M NaOH is added to 50.00 ml 0.0500M benzoic acid (C_6H_5COOH , pKa = 4.202)? (8%)
- 2. A 0.1576g of primary standard $Na_2C_2O_4$ (fw =134.00) in 1M H₂SO₄ required 20.93ml of a KMnO₄ solution to reach end point. Calculate the molarity of the KMnO₄ solution. (5%)
- 3. The concentration of the barbital (MW= 184.19) in a blood sample was determined by extracting 3.00 ml of the blood with 15 ml of chloroform. The chloroform, which now contains the barbital, is then extracted with 10.0mL of $NaOH_{(aq)}$ (pH 13). The aqueous extract is placed in a 1.00-cm cell, and an absorbance of 0.265 is measured. When 3.00 ml of a standard solution with a concentration of 3.00 mg/100 ml is analyzed through the same procedure, the absorbance is 0.404.
 - (1) Calculate the molar absorptivety of barbital solution at pH 13. (4%)
 - (2) Calculate the molar concentration of barbital in the blood sample. (4%)
- 4. The following data were obtained by liquid chromatography on an analytical column (Vm=1.42ml, Vs=0.170ml).

Compound	t _r , min	w, min
Unretained	2.8	-
А	8.2	0.71
В	10.1	0.84

(1) Calculate the capacity factor and the partition coefficient (K=Cs/Cm) for compound A. (6%)

(2) Calculate the resolution. (3%)