國立嘉義大學九十五學年度資訊工程學系碩士班招生考試試題

科目：数學

1．Explain the Prim＇s method．（10\％）And give the comparison between the Prim＇s and the Kruskal＇s methods．（5\％）

2．Show and explain the time complexities of the merge sort under two situations：the best case and the worst case．（10\％）

3．What is the knapsack problem？（5\％）What are the running times for the fractional knapsack problem and the general $0 / 1$ knapsack problem， respectively？（5\％）

4．Input the following data in the given order： $13,14,15,2,1,8,3,10,7$ ．And， show the following corresponding trees：（a）binary search tree ；（5\％）（b）2－3 tree ；（5\％）（c）AVL tree．（5\％）

5．Recurrence relations：
（a）Solve the following recurrence relation ：

$$
a_{n+2}-4 a_{n+1}-21 a_{n}=0, n \geq 0, a_{0}=0, a_{1}=1 .(6 \%)
$$

（b）Find the general solution for the recurrence relation ：

$$
a_{n}=-5 a_{n-1}-6 a_{n-2}+42 \cdot 4^{n}, \quad n \geq 2 .(9 \%)
$$

6．Use Dijkstra＇s algorithm to find the shortest paths from the vertex s to all the other vertices of the following graph．Show the running steps in detail． （15\％）

7．Determine whether the following two posets are lattices．Explain your answer ：（10\％）
（a）Hasse diagram：

（b）The relation $\{(a, b) \mid a$ divides $b\}$ on the set $\{1,2,3,4,5\}$ ．
8．How many ordered pairs of integers (a, b) are needed to guarantee that there are two ordered pairs $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ such that $\left(a_{1} \bmod 7\right)=\left(a_{2} \bmod 7\right)$ and $\left(b_{1} \bmod 6\right)=\left(b_{2} \bmod 6\right) \cdot(10 \%)$

