國立嘉義大學九十三學年度

資訊工程學系碩士班招生考試試題

科目：數學

一，
（1）Please connect the $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$, h to $1,2,3, \ldots, 8$ ：there exists one－to－one mapping relationship．
a．Identity：\quad 1．$(p \vee q) \vee r \Leftrightarrow p \vee(q \vee r),(p \wedge q) \wedge r \Leftrightarrow p \wedge(q \wedge r)$
b．Domination：$\quad 2 . p \vee q \Leftrightarrow q \vee p, p \wedge q \Leftrightarrow q \wedge p$
c．Idempotent：\quad 3．$\neg(\neg p) \Leftrightarrow p$
d．Double Negation：4．$p \vee p \Leftrightarrow p, p \wedge p \Leftrightarrow p$
e．Commutative：\quad 5．$p \vee \mathrm{~T} \Leftrightarrow \mathrm{~T}, p \wedge \mathrm{~F} \Leftrightarrow \mathrm{~F}$
f．Associative：\quad 6．$p \wedge \mathrm{~T} \Leftrightarrow p, p \vee \mathrm{~F} \Leftrightarrow p$
g．Distributive：\quad 7．$\neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q, \neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q$
h．De Morgan＇s：$\quad 8 . p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r), p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$
$\mathrm{a} ?, \mathrm{~b} \underline{?}, \mathrm{c} \underline{?}, \mathrm{~d} ?, \mathrm{e} ?$
（10\％）
（2）Clock（Modular）Arithmetic：Find an integer \bar{x} where $0 \leq x \leq 28$ such that $\left(3^{64}-x\right)$ is a multiple of 29 （6\％）
（3）Clock（Modular）Arithmetic：Find an integer y where $0 \leq y \leq 36$ such that $\left(2^{36}+2-y\right)$ is a multiple of $37 . \quad(4 \%)$
二，
（1）Let three sets $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{a, b, c\}, \mathrm{C}=\{w, x, y, z\}$ have the mapping relationship as： $f: \mathrm{A} \rightarrow \mathrm{B}, \quad g: \mathrm{B} \rightarrow \mathrm{C}$ ；
$f=\{(1, b),(2, a),(3, b),(4, c)\} ;$
$g=\{(a, y),(b, z),(c, x)\}$ ；
What is \boldsymbol{w} ，if $g(f(\boldsymbol{w}))=z$ ？（5\％）
（2）Let $<\boldsymbol{R},+, \square>$ be the expression of a＂ring＂．A subring is a subset \boldsymbol{S} of \boldsymbol{R} with the operations＋and of \boldsymbol{R} restricted to \boldsymbol{S} and such that \boldsymbol{S} is a ring by itself．Now，if $\boldsymbol{S}, \boldsymbol{T}$ are the subrings of ring \boldsymbol{R} ，prove or disprove that $\boldsymbol{S} \cap \boldsymbol{T}$ is also a subring of \boldsymbol{R} ．（15\％）
三，Please draw binary trees $\mathbf{T}_{5}, \mathbf{T}_{6}$ and \mathbf{T}_{7} and show String5，String6 and String 7 according to the following table．In this problem，you are assigned to solve them using the given heuristic program statements as follows：（ 10% ）
\＃include＂MyBinaryTreeLib．h＂
struct BinaryTree＊MyBiTree［7］；
char＊Postorder（struct BinaryTree＊＊Tree，char＊Preorder，char＊Inorder）；
．．．

MyBiTree［7］：	Preorder ：	Inorder ：	Postorder ：
$\mathbf{T}_{\mathbf{1}}$	xNeUYC	NxUYCe	NCYUex
$\mathbf{T}_{\mathbf{2}}$	xNeUYC	NxUCYe	NCYUex
$\mathbf{T}_{\mathbf{3}}$	xNeUYC	NxYCUe	NCYUex
$\mathbf{T}_{\mathbf{4}}$	xNeUYC	NxCYUe	NCYUex
$\mathbf{T}_{\mathbf{5}}$	E39ICS	39ECIS	String5
$\mathbf{T}_{\mathbf{6}}$	E39ICS	93ECIS	String6
$\mathbf{T}_{\mathbf{7}}$	E39ICS	39ESIC	String7

四．The definition of big－Oh notation is that a function $f(n)$ is $O(g(n))$ if there exist constants n_{0} and c such for all values $n>n_{0}, f(n)<c * g(n)$ ．
（1）Assume that $f(n)$ is $O(g(n))$ ．Let $f_{l}(n)=\alpha * f(n)$ ，where α is a constant．Demonstrate that $f_{l}(n)$ is still $O(g(n))$ ．Hint：Find constants stated in the above definition．（5\％）
（2）Assume that $f(n)$ is $O(g(n))$ ，where $f(n)$ and $g(n)$ are both functions of n ， $g(n)>1$ for all n ．Demonstrate that $f(n)+\alpha$ ，for any constant α ，is still $O(g(n))$ ．（5\％）五，
（1）Show the result after inserting 2，1，4，5，9，3， 6 into an initially empty AVL tree．
（10\％）
（2）Insert $3,1,4,6,9,2,5$ into an initially empty binary search tree．Show the result of deleting the root．（10\％）
六，A pattern matching problem is to find the starting position of a pattern in a string．The time complexity of Knuth，Morris，Pratt pattern matching algorithm is $\mathrm{O}(m+n)$ ，where m is the length of string and n is the length of pattern．A failure function for a pattern is defined as below．

If $p=p_{o} p_{1} \ldots p_{n-1}$ is a pattern，then its failure function，failure，is defined as：
failure $(j)=\left\{\begin{array}{l}\text { largest } i<j \text { such that } \quad p_{0} p_{1} \ldots p_{i}=p_{j-i} p_{j-i+1} \ldots p_{j} \text { if such an } i \geq 0 \text { exists } \\ -1\end{array}\right.$
The Knuth，Morris，Pratt algorithm is：

```
int match(char *s, char *pat)
    int i = 0,j=0, lens = strlen(s), lenp = strlen(pat);
    while (i< lens && j < lenp) 
        if (s[i]== pat[j]) {
        else if (j ( = = = 0) i++;
    else j = failure[j-1]+1
    return ((j == lenp) ? (i - lenp) : -1);
}
```

Given a string＂abcaabbcaaaaaaa＂and a pattern＂abcabcacab＂．
（1）Compute the failure function for the pattern．（10\％）
（2）What are the values of i and j variables in the algorithm after the statement＂else j $=$ failure $[j-1]+1 ; "$ is executed for the first time？（10\％）

